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a b s t r a c t

The box-counting or capacity dimension algorithm, known from the fractal mathematics literature, is
used to measure the dimensionality D of chromatographic separation techniques for any number of
dimensions. It is shown that D has limit properties that match Giddings’ sample dimensionality s. D
values are shown to be sensitive to the uniformity of peak spacing. A number of examples are given
where D is calculated for various limits in one- and two-dimensional separations and for heart-cutting
separations. The use of D as a quantitative measure of multidimensional orthogonality is suggested as
D, due to the scale-free nature, is not dependent on the effective separation area. The connection to
statistical peak overlap theory is discussed.
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. Introduction

It is often discussed that chromatograms which possess uniform
lose spacing of peaks would be most advantageous [1] as the num-
er of detectable single component peaks, m, would be equal to the
eak capacity nc. This would place the maximum number of sepa-
able components in the minimum amount of separation space or
ime. We will confine this dialog for separations in time although
he concept is general and can be utilized in space, for example with
hin-layer chromatography in one or more dimensions. We will
eturn to the distance–time duality occasionally in our discussion.

The peak capacity is defined as [2–4] the number of equispaced
ingle component peaks that fit within a discrete time increment
1 ≤ t ≤ tm so that

c = �t

4�Rs
(1)
here �t = tm − t1 is the time increment, � is the Gaussian stan-
ard deviation and Rs is the resolution by which peaks are to be
esolved. When peaks are equispaced, the separation speed can be
ncreased as the resolution can be lowered somewhat to accom-

∗ Tel.: +1 215 641 7854; fax: +1 215 619 1616.
E-mail addresses: MSchure@Dow.com, MSchure@Rohmhaas.com

021-9673/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.chroma.2010.11.016
modate more peaks. In real-world separations, this concept of an
ordered chromatogram becomes increasingly difficult to imple-
ment as the saturation ˛ = m/nc of the separation increases.

The free energy distribution of solute transfer between mobile
and retentive phase controls how efficiently one can order a
chromatogram for multicomponent isocratic and isothermal sep-
arations. However, when one adds the ability to manipulate the
free energy distribution in a chromatogram by temporal changes
in temperature and/or in solvent composition, the chromatogram
can be more optimally sorted to maximize the number of peaks
per operating time. We refer to the modification in the free energy
distribution as selectivity optimization in the exercise of modifying
peak positions in a chromatogram.

A number of metrics have been proposed for evaluating chro-
matographic performance including the number of peaks, peak
capacity, resolution, plate count, plates per unit time, peaks per unit
time and more [5]. These metrics are very useful and often define
the performance of the chromatogram. However none of these met-
rics will measure the uniformity of retention time spacing. One set
of methods, based on Fourier techniques, [6–11] has been used to

identify patterns of ordered peaks in one- and two-dimensional
chromatography. These techniques use autocorrelation methods
and use the whole peak profile but rely on a specific model to
describe this ordering. These methods are not in wide-spread use
but still constitute an interesting area of chromatographic research.

dx.doi.org/10.1016/j.chroma.2010.11.016
http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
mailto:MSchure@Dow.com
mailto:MSchure@Rohmhaas.com
dx.doi.org/10.1016/j.chroma.2010.11.016
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In this paper it will be shown how analysis of chromatographic
etention times using the box-counting or capacity dimension
ethod, which is often used to calculate the fractal dimension

nd power law scaling exponent, can be used to measure chro-
atographic uniformity and the “effective dimension” D of the

eparation. The dimension D will be shown to make a convenient
etric for describing peak uniformity in 1, 2, 3 . . . and in general,

-dimensional separations. D will be calculated using synthetic
hromatograms and shown to agree with the sample dimension-
lity s of Giddings [1] at the limit points. Also discussed is the
imensionality of heart-cutting and the limit where D → 0. Quan-
itative estimates within the limit points are shown for retention
ime distributions generated by a random (Poisson) peak place-

ent method and a power law renewal process illustrating the
ensitivity of D to peak ordering. It is suggested that D is highly
seful as a measure of multidimensional peak orthogonality, as it

s independent of the scale, area and angle of the multidimensional
hromatogram. Examples of using D to characterize experimen-
al measurements are given for one- and two-dimensional data.
he mathematical connection of power law scaling to the statistical
verlap theory [12–18] is briefly discussed.

. Basis of the method

.1. Fractal and power law scaling

An interesting set of tools have been developed in mathematics
o characterize the fractal dimension [19–22] of self-similar objects.
he connection to chromatographic peaks will be discussed below.
hese objects are unique as they look the same or have the same
caling of mass with distance on different length scales. Many of
hese objects have beautiful shapes and appear to be present in

any biological systems [19–22]. The fractal dimension [19–22] is
efined as:

= lim
ε→0

log N(ε)
log 1/ε

(2)

here N(ε) is the number of objects (such as boxes and disks in
wo dimensions, and spheres and cubes in three dimensions) with
bject size ε, needed to cover some structure. D need not be an
nteger number; it describes how the mass or density of an object
cales with the length scale that describes the object.

Many variations on this dimension exist when an emphasis is
laced on measuring real-world objects and sampled-data tempo-
al signals. These objects and signals are not necessarily self-similar,
ike most fractal objects, but like fractals possess power law scaling
o that [21]:

(ε) = cε−D∼ε−D (3)

here c is a scaling constant, ∼ is read as “scales as,” ε is a scale
ength, for example the length of a covering box, and M(ε) is the

easurement mass or density. Taking the logarithm of both sides
f Eq. (3) gives M(ε) equal to N(ε) of Eq. (2). It will be shown in
he section on estimating D (see Section 2.2 below) that N (and
) are the number of boxes containing at least one data point of

he structure. The structure here refers to the retention time of a
hromatographic peak.

Another way to state this in chromatographic terms is to state
hat the density of peaks, as a function of the time scale ε (or time
ncrement ε), M(ε), scales as ε−D. This indicates that the inter-peak
pacing is much more probable to be small (ε−D monotonically

ecreases as ε increases), yet there is a small probability that the

nter-peak spacing can be large, due to the power law (i.e. non-zero)
ail.

Because we are not interested in c and only in D, this analysis
s often referred to as being “scale invariant” [19–22]. It does not
1218 (2011) 293–302

matter if the measurement scale is in seconds, hours, days, etc. This
analysis is sensitive to the the ordering of events and how the events
occur in time (or position) in a relative sense, but not on the absolute
scale of the measurement.

Many natural phenomena, such as the relationship of metabolic
rate q0 and body mass Mb, have power law scaling [23]. In this case
q0∼M3/4

b
which is obeyed over 27 orders of magnitude. Mammalian

lifespan is known [23] to scale as M1/4
b

. In addition, the connectiv-
ity model of nodes on the internet was originally thought to be a
Poisson process. This was later shown to be described by a scale-
free power law [24]. Network traffic flow was long thought to be a
Poisson process with an exponential waiting time density function.
This has been found to be far more accurately characterized by a
power law distribution [25].

The power law assumption [22,25,26] used in this paper differs
significantly from the exponential waiting time distribution of Pois-
son processes [27–30]. Power law distributions have what is called
a “heavy-tailed” distribution [22,25,26] that dies off much slower
than an exponential distribution. The persistence of this distribu-
tion gives rise to many natural phenomena that are not captured
with an exponential waiting time in nature.

One practical aspect of using this approach for measurements
on objects and signals, rather than on mathematically constructed
objects, such as fractal objects, is that there is a limit to the size
of ε in the small limit ε → 0. For point processes [30], where we
accept the retention time as a marker or point, this limit is dictated
by the smallest distance between points. For objects, this limit is
established by the minimum object size. This is not a problem for
objects constructed from formulas which describe fractal objects
where self-similarity occurs on all length scales. However, this will
be a problem for the determination of D from measurements, as
discussed below.

2.2. Box-counting or capacity dimension

One of the most commonly used characterization algorithms
to determine D is the so-called box-counting or capacity dimen-
sion [20,21,26]. Other algorithms which measure some form of the
dimension include the correlation dimension [21,31–33] and the
information dimension [21].

The box-counting dimension algorithm is easily implemented
as follows. For data taken in one dimension the retention time data
are first normalized to be in the range 0–1. This is accomplished by
determining the minimum and maximum of the retention times,
tmin and tmax respectively. The data is then normalized so that
t′
i
= (ti − tmin)/(tmax − tmin) and the subscript i here runs from 1 to

the total number of visible peaks. This approach is also used for n-
dimensional data where we define n to be the number of retention
axes, as was suggested by Giddings [1]. All data are normalized so
that 0 ≤ tij ≤ 1 in all dimensions where 1 ≤ j ≤ n. A series of intervals
is then constructed so that:

εi = t′
max − t′

min
i

= 1
i

(4)

where the index i here runs from 1 to the maximum number of
box divisions. For one-dimensional chromatograms the number of
intervals N(εi) needed to cover the data with interval width εi is
determined by counting. The data are then plotted as log N versus
log εi. The linear least-squares slope with the highest correlation
coefficient within a range of the data gives the box-counting dimen-
sion times a factor of −1.
The least-squares analysis, depending on the retention time
model (e.g. uniform, Poisson, power law, etc.) has a certain range of
fitting. For true fractal models, this range is semi-infinite. However,
for typical simulated and experimental data, the range of the lin-
ear portion of the least-squares analysis data is easily determined
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y manual inspection. This will be automated in future work but
s not critical in calculating the dimension at the medium-accuracy
ange requirement used in this paper. Accuracy of the box-counting
ethod has been discussed in various contexts such as the math-

matical basis [21] and in applications of image processing [34].
or one and two-dimensional point data, the box-counting algo-
ithm works adequately as long as an adequate number of points
s present. It is not clear where the limit is, as it is a function of D.

ethods have been devised to correct the box-counting algorithm
or finite sample effects [35] under a number of assumptions.

For n-dimensional data the approach is very similar. For n = 2, a
eries of boxes of varying length εi are applied to the planar data
nd the number of boxes N(εi) that can cover the data is recorded as
function of εi. A plot of log N(εi) versus log εi gives a least-squares
stimate of D again by multiplying the slope by −1. The same is true
or three-dimensional data where cubes of equispaced sides εi are
tilized with exactly the same procedure. This procedure applies to
ny n-dimensional separation with no limit on n although this pro-
edure becomes computationally inefficient for n ≥ 3. We will refer
o the box-counting or capacity dimension simply as dimension for
he duration of the text.

In all cases the data is divided into segments over the normal-
zed range, as discussed above, and as shown in Eq. (4). In some
ases, there is not enough data distributed throughout the range
o that a plot of log N(εi) versus log εi will appear to be choppy. To
emedy this problem, the value of i in Eq. (4) above is not incre-
ented as i = 1, 2, 3, . . ., imax but rather a finite step value differing

rom 1 is often used so that i = imin, (imin + istep), (imin + 2 × istep), . . .,
max. This is determined by visual inspection of the plot of log N(εi)
ersus log εi and modified when this choppiness becomes appar-
nt. In future work this will be automated so that the properties
f the data will be used to determine istep and imax. The correlation
oefficient, r, is utilized as a goodness-of-fit least-squares metric
hroughout these analyses. This is necessary to describe how well
ower-law scaling fits the data. When comparing D values which
ary by small amounts, further statistical analysis may be necessary
nd this will be discussed in a subsequent paper.

.3. Synthetic chromatogram generation

Although our interest here is point process retention times, it is
nstructive to put concentration profiles on the retention time dis-
ribution and view these as chromatograms. Furthermore, with this
rocedure, as the saturation ˛ increases, the number of detectable
hromatographic peaks p will decrease due to peak fusion [12] as
= m exp( − ˛) for random (Poisson) peaks. By adding zone broad-
ning to the concentration profiles, the number of detectable peaks,
s a function of dimensionality, can be investigated.

In all cases, unless indicated, the component peak heights are
ampled from an exponential density function [15,36–39] as has
een used in other peak simulations. This sampling can be done
irectly [40,41] as:

i = −ln �i (5)

here �i is a uniform random number on the interval 0 < �i ≤ 1 and
i is the amplitude of the ith component peak. The component
eak heights are then normalized to 0 < Ai ≤ 1 by dividing all of the
omponent peak heights by the largest component peak height.

.3.1. Random (Poisson) peaks
For random peak generation in one dimension, peaks can be
enerated by producing m retention times so that t1 ≤ t ≤ tm. This
s accomplished simply by generating random numbers �i so that
i = tmin + �i(tmax − tmin) and sorting so that ti ≤ ti+1 realizing that the
andom numbers �i used here are different than that used in Eq.
5). The resulting one-dimensional retention time vector T1 = (t1,
1218 (2011) 293–302 295

t2, . . ., tm) is Poisson-distributed [42–44] with component density
� = m/(tm − t1).

2.3.2. Generating power law peaks of known dimension
A more general procedure to create peaks of known D is to use

a specific power law density function. These functions are known
as renewal processes[27–29] and describe the probability of hav-
ing some event occur, such as finding a peak, after some time t or
distance x from the last peak.

One of the simplest power law renewal functions is that due
to Lowen and Teich [26,45] and this approach will be used here
although there are other functions which can also be utilized. This
function has been referred to as a fractal renewal process not-
ing that the types of point processes which are produced do not
resemble the regular structural features of common fractal objects.
However, these functions do have a certain self-similarity over a
wide range of length scales, as will be shown in the results section.

The fractal renewal probability density function P(t) has the
form [26,45]:

P(t) = D

A−D − B−D
t−(D+1) (6)

where A and B are the time interval lower and upper bound, respec-
tively. A pure power law, like that given in Eq. (3), is unsuitable for
a renewal function because the integration of this function over the
range 0–∞ would give an infinite result. The form given in Eq. (6) is
normalized when used in the interval A ≤ t ≤ B with P(t) = 0 outside
this interval.

The random interval spacings between peaks are obtained using
the transformation method [40,41] to sample P(t). This works as
follows. The function P(t) above is numerically integrated to give

F(y) =
∫ y

A

P(t)dt (7)

Then the t value is found where F(y) = � and as above, � is a uni-
form random number. This t value is a sample of the P(t) density
function. This procedure can be optimized for speed by making a
fine-spaced table of y and F(y) and linearly interpolating to get t.
After each sample is obtained, it is added to the last sample to make
the running sum which gives the retention time vector compo-
nents ti. The results are then rescaled to give chromatograms with
specified minimum and maximum retention times. When using
this procedure, one can specify A, B, and D, and obtain the reten-
tion times. D can be retrieved from both the raw and broadened
retention times, as discussed below.

The form of Eq. (6) has been criticized [46] as not being a true
renewal process because P(t) is not continuous in the limit as t → 0.
This is characteristic of power laws where both the lower and upper
bound must be defined or else the moments of these probability
density functions can diverge [25,26,46] and would not be defined
without the bounds. This can create an unphysical situation for use
in chromatography because this would preclude two solutes of dif-
ferent structure arriving at the end of the column at exactly the
same time and would also demand that all molecules elute within
some maximum amount of time. However, this suffices for keep-
ing a simple generator function form for peaks and the lower bound
A can be made vanishingly small. More complicated forms for the
renewal process function will be discussed in subsequent papers.
2.3.3. Peak broadening
Given the retention time vector T1, for one-dimensional chro-

matographic data, we use a simple Gaussian model to produce peak
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Table 1
Summary of one-dimensional chromatography results illustrating unique dimensional limits. Symbols and/or units are in parenthesis following column descriptors.

Spacing Figure Components (m) Peaksa (p) 1� (s) Saturationb (˛) Dimension (D)

Ordered 1a 30 30 (100%) 2.50 0.300 1.00
Random (Poisson) 1b 100 67 (67%) 2.00 0.513 0.71
Random (Poisson) 1c 50 45 (90%) 2.00 0.256 0.69
Fractal renewalc 1e 100 92 (92%) 2.00 0.513 0.95e

Fractal renewald 1f 50 24 (48%) 2.00 0.256 0.20e

a The number in parentheses are the fraction of visible peaks, p/m, expressed as a percentage.
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b Rs in Eq. (1), used to calculate ˛, is set equal to 1.00 here.
c A = 0.100 and B = 1.00.
d A = 0.100 and B = 300.0.
e These D values are used as input. The estimated D is discussed in the text.

rofiles as:

(1t) =
m∑

i=1

Ai exp

[
− (1t − ti)

2

21�2
i

]
(8)

here 1t is the first dimension time, 1�i is the Gaussian standard
eviation of the ith peak and m is the number of components, as
efore.

For two-dimensional data (n = 2) bi-Gaussian peak profiles are
roduced with first dimension and second times 1t and 2t respec-
ively and a retention time matrix

2 =

⎛
⎜⎜⎜⎜⎝

t11 t21

t21 t22

...
...

tm1 tm2

⎞
⎟⎟⎟⎟⎠ (9)

o that

(1t,2t) =
m∑

i=1

Ai exp

[
− (1t − ti1)

2

21�2
i

]
exp

[
− (2t − ti2)

2

22�2
i

]
(10)

here 2t is the second dimension time and 1�i and 2�i are the
i-Gaussian standard deviations in the first and second dimension
espectively. In all cases in this paper, the standard deviations 1�i

n Eq. (8) are of equal value. Furthermore, 1�i in Eq. (10) are of equal
alue and 2�i in Eq. (10) are of equal value. Once broadening has
een applied to the signal peak profile through by the use of Eq. (8)
or 1D chromatograms and Eq. (10) for 2D chromatograms, reten-
ion times are found by taking the first derivative of the signal peak
rofile and determining where the negative-going zero-crossing
ccurs. These negative-going zero-crossings are utilized (under
ero noise conditions) to determine the retention time vector used
or dimensional analysis.

.3.4. Experimental 1D peak analysis
Retention times from an experimental one-dimensional chro-

atogram are analyzed with in-house written software which
etects the negative-going zero-crossing of the first deriva-
ive of the amplitude. The first derivative is obtained using a
avitsky–Golay [47–49] first derivative filter with 7-point width.

eaks are determined using an amplitude gate to eliminate the
mallest peaks. This gate is adjusted by visual inspection of the
etected peaks and eliminating some of the smallest peaks from
onsideration. The peaks selected for analysis will be shown by
arking the selected peaks, as shown below.
3. Results

3.1. Limits in one dimension.

A summary of the results for model one-dimensional systems
is given in Table 1 along with corresponding synthetic chro-
matograms and box-counting curve fits given in Fig. 1a–f. These
results indicate that the dimension D of one-dimensional chro-
matograms is within the limits D ≤ 1.

For the case where peak spacing is constant across the elution
range, shown in Fig. 1a, D = 1.00. The least-squares curve fit is linear
with negative one correlation coefficient. Although not shown, the
dimension does not change if some peaks are omitted from the
box-counting dimension calculation. In other words, with missing
values the scaling does not change until the data gets sparse and
the calculation becomes highly inaccurate.

Random chromatograms, examples of which are shown in
Fig. 1b and c, use the random peak-placing Poisson process
described above to generate peaks with two saturation levels. In
the case of the higher saturation chromatogram, shown in Fig. 1b,
67 peaks are detected (67%), and 45 peaks are detected (90%) from
the lower saturation chromatogram shown in Fig. 1c. The estimated
dimension D, shown in Table 1 for both cases, are very similar.
Two things are suggested with that result in mind. First, D appears
to have some insensitivity as a measure from saturation effects.
Increasing saturation causes more missing values. Second, from
these and other simulations of random chromatograms, values of
D have been obtained in the range 0.55�D�0.76. These random
chromatograms have been generated across the saturation range
0.2�˛�0.6. This D value range may be characteristic of random
peak spacings noting that Poisson processes are not power law
distributed.

The curve-fitting least-squares procedures for these two chro-
matograms are shown in Fig. 1d. In both cases there is a limiting
fitting region, as expected. Because the random peak placement
does not possess power law scaling, the D values are anomalous,
however, the box-counting algorithm gives an idea what the lim-
iting behavior is for these chromatograms. Both datasets have
correlation coefficients r ≤ − 0.90. The scatter in the data at the
smaller box size is due to the data not being finely spaced enough
to have measure significance at that degree of spacing. That data, as
the line suggests, is not included within the least-squares analysis.

Two examples of using the fractal renewal process are shown
in Fig. 1e and f for high and low-dimensionality chromatograms,
respectively. The calculation conditions for these are given in
Table 1. Using the box-counting algorithm to analyze the detected
retention times produced by Eq. (6), after zone broadening, gives a
D value of 0.958 with correlation coefficient r of −0.999. This shows

that for a high D case, the specified D is recovered well here.

The high dimensionality chromatogram has 92 peaks that are
detected out of 100 (i.e. 92%). This is comparable with the Pois-
son peaks in Fig. 1c where 90% of the peaks are detected except
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ig. 1. Synthetic chromatograms used for dimensionality estimation for one-dime
) Random (Poisson) chromatograms. (d) Box-counting least-squares fits for peak
hromatogram.

hat the random peaks have a saturation ˛ = 0.256 as compared to
wice that of the high-dimensionality peaks. The high dimension-
lity chromatogram has more visible peaks at twice the saturation
ecause the peaks are placed more efficiently than with random
lacement.

This is in contrast to the low-dimensional chromatogram shown
n Fig. 1f. This figure shows the chromatogram before broadening
lower) and after broadening (upper). There are many peaks that
re exceedingly close together that are lost as the broadening pro-

ess is applied. In addition, a moderate number of baseline regions
f wide duration exist. This type of chromatogram can be expected
o be very susceptible to peak loss as broadening is increased due
o the close spacing within a clump of peaks. The moderate num-
er of baseline regions shown in Fig. 1f is a clear consequence of a
al chromatography. Conditions given in Table 1. (a) Ordered peak spacing. (b and
n in (b) and (c). (e) High-dimensionality chromatogram. (f) Low-dimensionality

heavy-tailed density function which will not be found in a random
chromatogram.

The low-dimensional chromatogram shown in Fig. 1f yields 27
detectable peaks (48%) which is roughly one-half of the number
of peaks from the random chromatogram of the same saturation.
Clearly, higher D chromatograms display more peaks at constant
saturation than chromatograms at lower D and the higher D
chromatograms are more resistant to losing peaks (and hence infor-
mation) from broadening processes than lower D chromatograms.
Estimating D, utilizing the broadened and detected low-
dimensional chromatogram, yields estimates of D ranging from
≈0.3–0.4. Apparently, the number of detectable peaks, which is
24 in this case, is not enough to give a good estimate of D. How-
ever, using the unbroadened 50 retention times also gives poor
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Table 2
Summary of two-dimensional chromatography results illustrating unique dimen-
sional limits. Symbols are in parenthesis following column descriptors.

Spacing in each dimension Figure Components (m) Dimension (D)

Uniform in both dimensions 2a 36 2.00

e
a
p
t
d
a
l
e
u
t
t
c

3

m
c
t
c

Uniform/on-diagonal 2b 36 1.00
Random/on-diagonal 2c 36 0.71
Random in both dimensions 2d 100 1.78

stimates of D. It may be that at low D values, the box-counting
lgorithm is quite inaccurate and may require substantially more
eaks than that used here, perhaps hundreds of peaks. Nonetheless,
he peaks generated by this procedure gives representive low-
imensional chromatograms for comparitive purposes. Because of
high probability of finding the unbroadened peaks, shown as the

ower chromatogram of Fig. 1f, a very small distance away from
ach other, the 50 components are not easily distinguished in the
nbroadened chromatogram. This extremely fine spacing appears
o give the upper chromatogram, shown in Fig. 1f, with heights
hat appear to be out of proportion, in some cases, to the lower
hromatogram.

.2. Limits in two dimensions.
A number of results are summarized for two-dimensional chro-
atography in Table 2 and shown in Fig. 2. For a chromatogram

ompletely ordered in both dimensions, as shown in Fig. 2a,
he resulting dimension is calculated to be 2.00 with correlation
oefficient r = − 1.00. This is the most desirable chromatogram

Fig. 2. Synthetic chromatograms used for dimensionality estimation for tw
1218 (2011) 293–302

and would indicate a “perfectly orthogonal” separation that is
most desired in two-dimensional chromatography. This is consis-
tent with Giddings’ concept of chemical dimension, as explained
below.

The case of having a completely ordered chromatogram on
the diagonal, shown in Fig. 2b, yields a dimension of 1.00, with
correlation coefficient r = − 1.00. This would be the case for a
chromatogram with identical columns in both dimensions and
identical solvent systems in both dimensions when a perfectly
ordered chromatogram is present in one of the column systems.
Obviously this is a case of a “completely non-orthogonal” sepa-
ration which due to peak ordering would be most desired in a
one-dimensional separation. In two dimensions it is a waste of
effort.

The same situation, only for a random chromatogram in one
dimension, yields the result shown in Fig. 2c with a dimension
of ≈0.71, similar to a one-dimensional chromatogram. This result
is also completely non-orthogonal and the same result could be
obtained with one-dimensional chromatography. This highlights
the result that the dimensional analysis gives essentially the same
result, independent of the number of independent separation coor-
dinates, when an n-dimensional separation gives a result that could
be obtained in less than n dimensions.

For a two-dimensional random chromatogram with Poisson

spacing in both dimensions, shown in Fig. 2d, D ≈ 1.78. Although
not shown, varying the saturation ˛ has only a small effect on D
for this case. Also not shown is the case where peaks below (or
above) the diagonal are eliminated; this case gives markedly lower
D values and will be discussed in another paper.

o-dimensional chromatography. The conditions are given in Table 2.
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ig. 3. A heart-cutting chromatogram portrayed as a two-dimensional chromatogra
s given in the first row of Table 3.

.3. The dimensionality of heart-cutting

We have examined the dimensional limits on one and two-
imensional chromatographic systems. Here we examine the
o-called “heart-cutting” mode, which takes one or more sam-
les from the first dimension column and injects this on to a
econd (dimension) column. This is not done continuously, as
n the previous examples which emulate comprehensive two-
imensional chromatography [50] where the second dimension
eparation system is synchronously injected with eluent from the
rst dimension column. Rather, one can think of this as having
ne or a few data row vectors (the second dimension column)
dded to a data column vector (the first dimension column). This
an also be a representation of a very sparse two-dimensional
hromatogram.

A typical example of a heart-cut chromatogram with random
eak spacing in both dimensions is shown in Fig. 3. Using differ-
nt random numbers, three two-dimensional chromatograms were
enerated for this example and the subsequent D values were found
n the approximate range 1.14 ≤ D ≤ 1.26. Other variations on this
pproach were tried including using ordered chromatograms in
ne or both of the dimensions and by having two second dimen-
ion chromatograms. These results are summarized in Table 3.
hese results are not rigorous as these ranges reflect the variation
n the least-squares curve fits and the variation from using three
hromatograms with different random number seeds and with dif-
erent numbers of peaks for each of the cases studied in Table 3.
onetheless, the trend shows how D reflects the spatial sparse-

ess of these configurations. From the results presented previously,
omprehensive two-dimensional chromatography has higher
easured dimensionality than the heart-cutting technique, as

xpected.

able 3
ummary of heart-cutting chromatography results illustrating unique dimensional
imits.

First dimension spacing Second dimension spacing Dimension (D)

Random Randoma ≈1.14 − 1.26
Ordered Random ≈1.19 − 1.23
Ordered Ordered ≈1.25 − 1.30
Random Orderedb ≈1.32 − 1.52
Random Randomb ≈1.41 − 1.59

a Shown in Fig. 3.
b There are two chromatograms in this dimension.
h retention axis has a random distribution of peaks. The data for this chromatogram

3.4. One peak limit

It is interesting to ask what the dimension should be for one
peak. This can be solved easily with no calculation. With one peak,
the box counting algorithm will return one box found, regardless
of the box size and the number of boxes in the grid. When one
plots the logarithm of the number of boxes needed to “cover” the
one peak retention time, as a function of the logarithm of the box
size, the resulting curve has a slope of zero. Hence the dimension
of one peak, regardless of the number of instrumental dimensions
n, is zero. This limit implies that one does not need a separation
system to return such a result. It also suggests conveniently that
one peak does not have any useful separation information in it. As
D decreases, intuitively the complexity of the separation decreases
to where the limit D → 0 implies no separation.

3.5. One-dimensional separation of a tryptic digest

An experimental chromatogram of a peptide separation is pre-
sented as an example of estimating D for a one-dimensional
separation. This separation, shown in Fig. 4a, is derived from
yeast Enolase 1. The Swiss-Prot database identification number
[51] is P00924. The sequence length is 437 amino acids. Chro-
matography was conducted with a Waters ACQUITY UPLC system
using a 2.1 mm × 100 mm 1.7 �m particle diameter ACQUITY UPLC
BEH300A Peptide Separation Technology column. Solvent condi-
tions were A: 0.02% TFA in water and B: 0.016% TFA in acetonitrile.
The gradient ranges from 0 to 50% B over 50 min with temperature
40 ◦C, and flow of 0.2 ml min−1. The signal utilized for analysis here
was the 214 nm signal from a Waters ACQUITY 2996 photodiode
array detector.

Fig. 4a shows 57 peaks marked with a small box at the peak
top. Analysis of the resulting retention times gives D = 0.892 with a
correlation coefficient r = − 0.999. The least-squares fit of the data
is shown in Fig. 4b.

It is somewhat surprising that the peptide fragments show a
high degree of order as the D value is much higher than random
chromatograms, as discussed above. The chromatogram shows
very good resolution of the higher amplitude peaks. For this sam-

ple, there appears to be very little “dead space” with almost no
appreciable amount of baseline placed in random positions. Fur-
thermore, there appears to be little peak fusion with successive
retention times appearing away from adjacent peaks as would be
expected for an ordered sample. Other one-dimensional exper-
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ig. 4. (a) Experimental one-dimensional chromatogram of a tryptic digest as descr
b) The least-squares analysis of the dimension of the chromatogram shown in Fig.

mental chromatograms that have been analyzed appear to be
oisson-like random chromatograms with the dimensions typi-
al of those given above. Some of these were gas chromatograms
f natural substances and others were gas chromatograms of
lcoholic beverages. A number of peptide mapping separations
ppear to have ordered chromatograms [52] and this order-
ng could possibly be a consequence of protein architecture and
unction.

.6. Two-dimensional separation of an industrial copolymer

A well-known example of a two-dimensional separation with
early independent retention mechanisms is the separation of alco-
ol ethoxylates [53] by liquid chromatography. An experimental
wo-dimensional chromatogram used for D analysis is shown in
ig. 5a and the experimental conditions are stated in the origi-
al publication [53]. Retention times were obtained by measuring
eaks manually from enlargements of the original figure.

The alcohol ethoxylates have an alkyl segment of length x and
n ethylene oxide (EO) chain of length y. The distribution of poly-
er length in x and y is important from a performance standpoint.

he alkyl chain separation is performed with reversed-phase liquid
hromatography using a C18 stationary phase column and the EO
roup separation is performed with normal-phase chromatogra-
hy. These separations appear to have little correlation between
etention mechanisms. This means that the EO segment can be
eparated regardless of the alkyl chain length and the alkyl chain
ength separation is only slightly correlated with the length of the
O chain.

The dimension of this separation is D = 1.85 with a correlation
oefficient of r = − 0.998. The least-squares curve-fit is shown in
ig. 5b. The power law descriptor is valid for slightly less than one
rder of magnitude. This chromatogram is very ordered and shows

high dimension value. At full ordering D will be equal to 2, as

tated previously.
The concept of orthogonality in multidimensional chromatogra-

hy is simple yet powerful; it considers that the retention must be
ncorrelated between dimensions to achieve the best separation. In
n the text. The boxes above the peaks are those retention times chosen for analysis.

that regard, in two-dimensional chromatographic separations, any
useful measure of orthogonality must be sensitive to how “spread
out” the chromatogram is with respect to peak positioning near
the diagonal. This concept also applies for separations where n ≥ 2
although for n ≥ 3 these separations are difficult to visualize. Any
clustering of the retention times along a diagonal must be avoided.

It appears that D may be a good measure of orthogonality as it
is insensitive to the area in two dimensions that is to be measured.
This is due to scale invariance discussed above. Previously devel-
oped orthogonality metrics [54–58] do not give simple numbers
with easily understood limits. These methods typically do not have
a dimensionally invariant basis; that is they apply to n ≥ 2 but not to
n = 1. This makes D an attractive method for comparison over a wide
range of chromatographic experiments. As stated recently [57], the
fraction of area covered by a two-dimensional chromatogram [56]
is not a good measure of orthogonality; orthogonality has not been
rigorously defined in multidimensional chromatography but the
concept of having the chromatogram randomly occupy the line
(n = 1), area (n = 2) and volume (n = 3) is intuitively satisfying. Even
better is to have order in the multiple dimensions as exemplified
by higher D values.

Clearly, two-dimensional separations, when peaks are clustered
near the diagonal, are not adequately utilizing the separation space.
The dimensionality measurement D appears to be a reasonably
good metric of orthogonality as it is independent of the scale of
the line, area and volume of n = 1–3 separations, respectively. This
measure is independent of the angle of the retention times with the
axes (n ≥ 2) and is also somewhat independent of missing peaks, as
discussed above.

One cannot imply separation speed and separation efficiency
based on the measurement of D nor some other measure of orthog-
onality [57]. Clearly, dimensionality is a highly useful measure
for selectivity optimization but not for speed optimization. Speed

optimization must involve the component generating rate per
dimension and the inherent zone width as parts of the overall
speed optimization process. The inclusion of D and these later two
scale-dependent metrics into an overall optimization strategy is
the subject of current on-going research.
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Fig. 5. (a) Experimental two-dimensional chromatogram of an alkyl ethoxylate
showing the distribution of alkyl and polyethylene oxide segment lengths. Reprinted
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class of materials to examine the mass spectrometry results. How-
rom reference 50. (b) The least-squares analysis of the dimension of the chro-
atogram shown in Fig. 5a.

.7. Relationship with Giddings’ chemical dimension

Giddings [1] suggested the concept that solutes would pos-
ess specific groups or ligands that could be separated by specific
nteraction with a stationary phase for multidimensional separa-
ions. The sample dimensionality s would be the number of specific
etention mechanisms that could be utilized to specifically separate
hese molecules. Hence, it is expected that the experimental two-
imensional separation shown in Fig. 5a should have a dimension of
≤ 2 using Giddings’ sample dimension s. This is in essential agree-
ent with D = 2 from the synthetic ordered chromatogram shown

n Fig. 2a and with the highly orthogonal alcohol ethoxylate chro-
atogram shown in Fig. 5a where D = 1.85. Although the Giddings

ample dimension s is conceptual, it represents an upper bound to
he box-counting dimension, i.e. s ≥ D.

.8. Statistical peak overlap theory with power law renewal
rocess
The statistical theory of overlap [12–17], considers in the sim-
lest form that the arrival times of component peaks are governed
y a Poisson renewal process [27–30]. The Poisson process is based
1218 (2011) 293–302 301

on exponential waiting times:

P(x) = �e−�x (11)

such that the probability P(x) of finding the next peak some time
t or distance x after the last peak, is an exponential waiting time
governed by � where � is the component density or the number
of components per total separation distance or time, as discussed
above. Once P(x) is defined, P(x ≥ x0) is found by integration of P(x)
between x0 and ∞, noting that x0 is some value of distance or time
whereby two peaks are still resolved at some stated resolution. The
number of singlet peaks, doublets, triplets, . . . is then determined
by calculation from P(x ≥ x0) and P(x < x0) and the total peak count
summed up across all singlets, doublets, triplets . . . via an infinite
series to give the number of visible peaks, given the number of pure
components. The details of this procedure are given in the original
paper [12] and in a paper where other probability density functions
are explored [18].

To accommodate the power law scaling used in this paper, Eq.
(11) must be modified to accommodate a power law renewal pro-
cess, such as that given in Eq. (6). There are a number of ways to
do this and will be the subject of a separate paper from this labo-
ratory. We will still assume for a power law renewal process that
a constant density of peaks occurs across a finite sample of a chro-
matogram. This was assumed in the original peak overlap theory
[12]. However, a constant peak density is not mandatory as an over-
lap theory has been developed [16] where a variable peak density,
as a function of time, can be implemented.

3.9. Discussion

There are a number of investigations that this work has
spawned. Due to length constraints and the extent of scope these
will not be covered here. First, there are other methods besides the
box-counting method that have unique dimensional information.
These include the correlation dimension [21,31–33] and the infor-
mation dimension [21], as mentioned above. Furthermore, wavelet
methods [59,60] have been used to deliver higher accuracy estima-
tors [61] than the simple box-counting procedure. These should be
compared for this application. Maximum likelihood methods have
also been mentioned in the literature [62] as a promising method
for the direct estimation of the power law exponent and hence the
dimensionality of the data. These need to be tried and contrasted
with the box-counting dimension.

The dimensionality approach may have merit for the selectiv-
ity optimization of chromatograms in any number of dimensions.
If one desires to approach the ideal equispaced chromatogram
through selection of columns and optimization of gradient-elution
conditions (LC) and temperature gradient conditions (GC), one
should be able to measure D in an iterative methods development
process.

We have undergone a preliminary investigation of the dimen-
sionality of mass spectral data with the mass-to-charge (m/z) axis
being a second separation dimension to the first chromatographic
axis in an LC/MS experiment. This is an interesting case because
depending on the type of ionization and the sample, the various
time-based (mass) chromatograms, as a function of m/z, show lots
of correlation across the various m/z ranges. One observation has
been, in the case of gas chromatographic analysis of volatile fruit
extracts, that the dimension is relatively constant across the m/z
axis and these values of D suggest these mass chromatograms
are of a Poisson type. More data needs to be taken over a wider
ever, it is expected that some chromatograms will be Poisson
in nature and some will obey power law scaling depending on
the formation mechanism of the sample. Davis et al. [17] have
examined the validity of a number of chromatograms and found
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ome to be Poisson in character and others did not obey Poisson
tatistics.

For very complex materials, such as a protein analysis of human
erum analyzed by slab gel two-dimensional electrophoresis [63],
he use of a single dimension may be greatly misleading. When one
ooks at this type of two-dimensional separation, for example the

ap of proteins from colorectal epithelial cells [64], the results are
o complex that it is unlikely that one unique dimension would
erve to characterize the separation. This has been recognized to
ccur in highly complex processes where it is thought that there is
distribution of dimensions within the process. To accommodate

his requirement, multifractal analysis has been developed [21].
owever, single-value dimension numbers appear to be highly
seful as a measure of peak uniformity in one-dimensional chro-
atography and as a measure of orthogonality in two-dimensional

hromatography. We expect the use of the dimensionality metric
or categorizing separations to increase as this metric is further
eveloped and accepted.
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